Closure in a Hilbert space of a prehilbert space Chebyshev set

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The closure in a Hilbert space of a preHilbert space Chebyshev set that fails to be a Chebyshev set

Gordon G Johnson* ([email protected]), Department of Mathematics, University of Houston, Houston, TX 77204-3008. The Closure in a Hilbert Space of a PreHilbert Space CHEBYSHEV Set Fails to be a CHEBYSHEV Set. Preliminary report. E is the real inner product space that is union of all finite-dimensional Euclidean spaces, S is a certain bounded nonconvex set in the E having the property that every...

متن کامل

Relative Chebyshev Centers in Hilbert Space

We characterize inner product spaces in terms of the relationship between the relative Chebyshev center of a set and the absolute Cheby-shev center of an associated set. A consequence of the characterization is that an existing nite algorithm can be adapted to calculate the center of a nite set relative to a nite dimensional aane space. We also discuss the case where the constraint set is nonli...

متن کامل

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

متن کامل

Into a Hilbert Space

Nowak [N], improving a theorem due to A. N. Dranishnikov, G. Gong, V. Lafforgue, and G. Yu [DGLY], gave a characterization of coarse embeddability of general metric spaces into a Hilbert space using a result of Schoenberg on negative definite kernels. He used this characterization to show that the spaces Lp(μ) coarsely embed into a Hilbert space for p < 2. In this article, we show that lp does ...

متن کامل

A Rigid Space Homeomorphic to Hilbert Space

A rigid space is a topological vector space whose endomorphisms are all simply scalar multiples of the identity map. This is in sharp contrast to the behavior of operators on `2, and so rigid spaces are, from the viewpoint of functional analysis, fundamentally different from Hilbert space. Nevertheless, we show in this paper that a rigid space can be constructed which is topologically homeomorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2005

ISSN: 0166-8641

DOI: 10.1016/j.topol.2003.09.017